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Abstract
The non-Markovian collision integral is obtained on the base of the Kadanoff–
Baym equations for Green functions in a form with allowance for small
retardation effects. The collisional relaxation times and damping width of
the giant isovector dipole resonances in nuclear matter are calculated. For an
infinite Fermi liquid the dependence of the relaxation times on the collective
vibration frequency and the temperature corresponds to the Landau prescription.

1. Introduction

The dissipative properties of many-body systems, specifically transport coefficients for
viscosity as well as the damping of the collective excitations, are strongly governed by the
interparticle collisions. In the semi-classical approach these collisions are described by a
collision integral in the kinetic equation. This allows us to involve a viscosity in the motion
equations similar to the phenomenologicalNavier–Stokes ones [1–6]. An advantage of such an
approach is a conceptual clarity and a possibility to use many results from a general macroscopic
physics.

For correct description of the collision relaxation rates in systems with a fast variation
of the mean field, it is necessary to incorporate the memory (retardation) effects [7–16].
We investigate the form of the non-Markovian linearized collision integral with retardation
using the Kadanoff–Baym equations [17, 18] for Green functions. This method enables us
immediately to take into account the self-consistent mean field.

The non-Markovian collision term of the semiclassical linearized Vlasov–Landau equation
was obtained with the use of the Kadanoff–Baym equations for the Green functions in [11, 14].
The kinetic equation was considered in a one-component Fermi liquid with the use of the
linear approximation on deviation from overall equilibrium with a nonequilibrium distribution
function δ f = f ( �p, �r , t) − f̄ (ε̄) ∝ exp(−iωt), where f ( �p, �r , t) is an exact distribution
function and f̄ is an equilibrium distribution function at equilibrium single-particle energy ε̄.
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An expression for the linearized collision integral was obtained in the Born approximation on
two-body collisions in the following general form:

J ( �p, �r , t) = J (1)( �p, �r , t) + J (2)( �p, �r , t), (1)

where the first component corresponds to variation of the distribution function and the second
one is connected with the variation δU = ε( �p, �r , t) − ε̄ of the mean field with ε( �p, �r , t) for
the actual single-particle energy.

One can see that this relationship does not agree with the general form of the linearized
Landau–Vlasov equation in a Fermi liquid in the limiting case of the states with weak time
dependence of the nonequilibrium component of the distribution function, when ∂δ f/∂ t →
0. Indeed, the linearized Landau–Vlasov equation in quasi-homogeneous systems can be
presented in the following form:

∂δ f

∂ t
+

p

m

(
�̂p · ∂

∂�r
)

δ f̄ = J, (2)

where δ f̄ is a linear deviation of the exact distribution function f ( �p, �r , t) from the distribution
function of the equilibrium shape f̄ (ε) evaluated with actual single-particle energy ε = ε̄+δU ,

δ f̄ = δ f − d f̄

dε̄
δU = δ f − f̄ (ε). (3)

The derivative ∂δ f/∂ t can be omitted in equation (2) for slightly time-dependent states
and the collision integral should be a functional, � , of the δ f̄ ,

J = �(δ f̄ ) ≡ p

m

(
�̂p · ∂

∂�r
)

δ f̄ , (4)

in order that the Landau–Vlasov equation is fulfilled in this case. The relationships (1) and (4)
are generally in contradiction and the derivation of the form of the non-Markovian collision
integral from [11, 14] can be revised.

It was pointed out in [3, 19] that collisional integrals of the type (4), J ≡ J (δ f̄ ),
are the general form of the collision integrals between quasiparticles in a Fermi liquid
without retardation and lead to a local equilibrium state described by distribution function
fle = f̄ (ε = ε̄ + δU). Due to this we use in the following this terminology.

In this contribution an expression for the non-Markovian collision integral of the linearized
Vlasov–Landau transport equation from [11, 14] is modified in section 2 for the case of slightly
time-dependent states, i.e. in a form which allows for reaching the local equilibrium in a system.

In section 3 calculations of the relaxation times and damping width of the collective
vibration in nuclear matter with the use of the collision integral with the retardation effect are
presented.

2. Non-Markovian linearized collision integral within the semiclassical approach

In order to obtain the linearized Vlasov–Landau equation with the collision integral we use
the mixed { �p, �r } Weyl–Wigner representation for single-particle Green functions (correlation
functions) G>(1, 1′), G<(1, 1′):

f ( �p, �r , t) ≡ g<(t, t; �p, �r) =
∫

d�r ′ exp

(
− i

h̄
�p�r ′

)
g<

(
t, t; �r +

�r ′

2
, �r − �r ′

2

)
;

�r ′ = �r1 − �r1′ , �r = 1
2 (�r1 − �r1′),

(5)

where f ( �p, �r , t) is one-body distribution function and Green functions are determined
by [17, 18]

G>(1, 1′) = −i〈�(1)�+(1′)〉, t1 > t ′
1,

G<(1, 1′) = i〈�+(1′)�(1)〉, t1 < t ′
1.

(6)
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Here, �+(1) and �(1) are the operators of creation and annihilation of a fermion; the symbol 1
includes both space and time variables, namely 1 ≡ {�r1, t} (we omit isotopic and spin variables),
and the expectation values in equation (6) are calculated for the ground state or for the ensemble
of initial states if the temperature of the system is not zero.

The Green functions G>(1, 1′) and G<(1, 1′) satisfy the Kadanoff–Baym equation[
ih̄

∂

∂ t1
+

h̄2

2m
∇2

1 − U(1)

]
G><(1, 1′) = I ><

1 (1, 1′) − I ><
2 (1, 1′),

[
−ih̄

∂

∂ t ′
1

+
h̄2

2m
∇2

1′ − U(1′)
]

G><(1, 1′) = J ><
1 (1, 1′) − J ><

2 (1, 1′),
(7)

where the single-particle potentials U(1), U(1′) are determined by the relations

U(1)G><(1, 1′) =
∫

d�r2 �0(�r1, �r2, t1)G><(�r2, t1; 1′),

U(1′)G><(1, 1′) =
∫

d�r2 G><(1; �r2, t1′)�0(�r2, �r1′ , t1′)

(8)

with

�0(�r1, �r2, t) = −iδ(�r1 − �r2)

∫
d�r v(|�r1 − �r |)G<(�r , t1; �r , t1) + iv(|�r1 − �r2|)G<(�r1, t1; �r2, t1),

(9)

and v(|�r1 − �r2|) for the two-body potential.
The functions I ><

1,2 and J ><
1,2 are correlation integrals of the form

I ><
1 (1, 1′) = 1

h̄

∫ t1

t0

dt2 [�>(1, 2) − �<(1, 2)]G><(2, 1′),

I ><
2 (1, 1′) = 1

h̄

∫ t ′
1

t0

dt2 �><(1, 2)[G>(2, 1′) − G<(2, 1′)],

J ><
1 (1, 1′) = 1

h̄

∫ t1

t0

dt2 [G>(1, 2) − G<(1, 2)]�><(2, 1′),

J ><
2 (1, 1′) = 1

h̄

∫ t ′
1

t0

dt2 G><(1, 2)[�>(2, 1′) − �<(2, 1′)].

(10)

These correlation integrals have the general form with allowance for the retardation effect. It
is assumed as usual that interaction between particles starts at the time t0 = −∞.

In order to obtain the Landau–Vlasov equation the following suggestions are
adopted [11, 14]:

(A) the Born approximation for two-body scattering;
(B) the time variation of the nonequilibrium distribution function δ f ∝ exp(−iωt) is taken as

a periodic one with real frequency during the whole time interval (−∞ � t ′ � t);
(C) the linear approximation on the deviation of one-body Green functions from their

equilibrium values is used;
(D) the Fermi system is considered as a quasi-homogeneous one in coordinate space.

The linearized Vlasov–Landau equation has the form (2) and can be presented as [11, 14]
∂

∂ t
f ( �p, �r , t) + {ε, f } = J ( �p, �r , t). (11)

Here,

{ε, f } ≡ ∂

∂ �p ε · ∂

∂�r f − ∂

∂�r ε · ∂

∂ �p f
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are the Poisson brackets and

ε( �p, �r , t) = p2

2m
+ U( �p, �r , t) (12)

is the classical energy of a particle in the mean field U( �p, �r , t) = ε̄+δU( �p, �r , t), where δU can
be expressed in terms of the Landau interaction amplitude F( �p, �p′) for the two-body collision
scattering matrix:

δU = g

NF

∫
d �p′

(2π h̄)3
F( �p, �p′)δ f ( �p′, �r ; t), (13)

where NF = 2 pFm∗/(gπ2h̄3), pF is the Fermi momentum, m∗ is the effective mass of the
nucleon and g is the spin degeneracy factor.

The linearized collision integral has the form (1) with (see equations (42), (43)
and (45), (46) of [14] for details)

J ( j)( �p, �r , t) = 2
∫

d �p2 d �p3 d �p4

(2π h̄)6
W ( �p1, �p2, �p3, �p4)δ(	 �p)B( j)( �p, �r , t). (14)

Here, W ({ �pi }) = (dσ/d�)4(2π h̄)3/m2 is the probability of two-body collisions with the
initial momenta �p1 = �p, �p2 and final ones �p3, �p4; dσ/d� is the in-medium differential cross-
section (in the Born approximation);

B(1)( �p, �r , t) =
4∑

k=1

δ fk(t)
∂ Q({ f̄ j })

∂ f̄k
[δ+(	ε̄ + h̄ω) + δ−(	ε̄ − h̄ω)],

B(2)( �p, �r , t)=Q({ f̄ j })	(δU(t))

h̄ω
{[δ+(	ε̄ + h̄ω) − δ+(	ε̄)] − [δ−(	ε̄ − h̄ω) − δ−(	ε̄)]},

(15)

where f̄k ≡ f̄ ( �pk, �r); ∂ Q({ f̄ j})/∂ f̄k are the derivatives of the Pauli blocking factor Q with
respect to f̄k ,

Q({ f̄ j }) = (1 − f̄1)(1 − f̄2) f̄3 f̄4 − f̄1 f̄2(1 − f̄3)(1 − f̄4). (16)

The ε̄i = ε̄( �pi, �r) and δU j are the equilibrium single-particle energy and the variation of the
mean field for a particle with momentum �pi respectively; 	ε̄ = ε̄1 + ε̄2 − ε̄3 − ε̄4, 	(δU) ≡
δU1 + δU2 − δU3 − δU4, 	 �p = �p1 + �p2 − �p3 − �p4. The equilibrium distribution function
f̄k ≡ f̄ ( �pk, �r) depends on the equilibrium single-particle energy ε̄k ≡ ε̄( �pk, �r): f̄k = f̄ (ε̄k).
It equals the Fermi function evaluated at temperature T , f̄ (ε̄k) = 1/[1 + exp((ε̄k − µ)/T )].

Note that the generalized functions δ+, δ− appearing in equation (15) include also an
integral contribution,

δ+(x) = 1

2π

∫ 0

−∞
dτ e−ixτ = i

2π

1

x + i0
= 1

2
δ(x) − 1

2π i
P

(
1

x

)
, δ−(x) = δ∗

+(x), (17)

where δ(x) is the delta function and the symbol P denotes the principal value of the integral
contribution. The integral terms of the δ±, corresponding to virtual transitions, are usually
rejected in the J because they are assumed to be included by renormalizing the interactions
between particles [8]. This corresponds to substitution of the δ(x)/2 for δ± in equation (15),
i.e., to taking into account real transitions with conservation of energy. We will consider below
only these transitions.

Now we will modify the expression for quantity B(1). We present the nonequilibrium
component δ f of the distribution function in the form

δ f ( �p j , �r , t) = −ν( �p j, �r , t)
∂ f̄ (ε̄ j)

∂ε̄ j
. (18)
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Then the quantity B(1) can be written as

B(1)( �p, �r , t) = −1

2

4∑
k=1

νk
∂ Q({ f̄ j })

∂ε̄k
[δ(	ε̄ + h̄ω) + δ(	ε̄ − h̄ω)]

= 1

2
	νQ({ f̄ j }) ∂

∂h̄ω
[δ(	ε̄ + h̄ω) + δ(	ε̄ − h̄ω)] − δB(1), (19)

where 	ν ≡ ν1 + ν2 − ν3 − ν4, νk = ν( �pk, �r , t) and

δB(1) = 1

2

4∑
k=1

∂

∂ε̄k
{νk Q({ f̄ j })[δ(	ε̄ + h̄ω) + δ(	ε̄ − h̄ω)]}

+
1

2

4∑
k=1

Q({ f̄ j })[δ(	ε̄ + h̄ω) + δ(	ε̄ − h̄ω)]
∂νk

∂ε̄k
. (20)

The first component in equation (20) determines a probability flux of colliding particles
which is connected with a possibility of variation of the energy ε̄k when the values of other
energies (ε̄ j �=k and h̄ω) are fixed. This term should be equal to zero because of fixing the
total energy in initial or final states and therefore it does not contribute to the total number of
collisions N :

N ( p̂) ≡
∫ ∞

0
dε J ( p̂, ε), p̂ ≡ �p/p. (21)

A relative dynamical component νk of the distribution function is slowly dependent on
energy and it can be considered (at least for low temperatures T � εF ) as a function of
the momentum direction rather than of the momentum: νk ≡ ν( �pk, �r , t) = ν( p̂k, εF , �r , t).
Therefore the second component in equation (20) is also negligible and the term δB(1) should
be omitted from equation (19), δB(1) = 0. The expressions for B( j) take the form

B(1)( �p, �r , t) = 1

2
	νQ({ f̄ j }) ∂

∂h̄ω
[δ(	ε̄ + h̄ω) + δ(	ε̄ − h̄ω)],

B(2)( �p, �r , t) = 1

2
Q({ f̄ j })	(δU(t))

h̄ω
{[δ(	ε̄ + h̄ω) − δ(	ε̄)] − [δ(	ε̄ − h̄ω) − δ(	ε̄)]}.

(22)

The shift in energy 	ε̄ by h̄ω in the arguments of the δ-functions of the
expressions (1), (14), (22) for the collision integral agrees with the interpretation of the
collisions in the presence of the collective excitations proposed by Landau [20]. According to
this interpretation, high-frequency oscillations in a Fermi liquid can be considered as phonons,
that are absorbed and created at the two-particle collisions.

As discussed in the introduction, the form of expressions (1), (14), (22) for the collision
integral is not correct in the general case and an additional modification of these expressions
is needed. The incorrectness results from approximations which were made at the kinetic
equation derivation.

Because of assumptions both on the undamped behaviour of the distribution function
throughout the time interval (−∞ � t ′ � t → ∞) and on the small magnitude of two-body
interaction, one can expect an overestimation of retardation effects in the foregoing expression
for the collision integral. This means that from a physical point of view this relationship should
be fulfilled only in the case of small ω.

Therefore, we replace the derivatives of the form ∂δ(	ε̄+h̄ω)/∂h̄ω and ∂δ(	ε̄−h̄ω)/∂h̄ω

in B(1) of the equation (22) by the finite differences (δ(	ε̄ + h̄ω) − δ(	ε̄))/h̄ω and
(δ(	ε̄) − δ(	ε̄ − h̄ω))/h̄ω, respectively. Then we combine the resulting expression with
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the contribution B(2) arising from the mean-field variation and finally obtain the linearized
collision integral for the Fermi liquid in the following form:

J ( �p, �r , t) =
∫

d �p2 d �p3 d �p4

(2π h̄)6
W ({ �pi})δ(	 �p)	χ Q

δ(	ε + h̄ω) − δ(	ε − h̄ω)

h̄ω
. (23)

Here, 	χ ≡ χ1 + χ2 − χ3 − χ4; χk = χ( �pk, �r , t) is a function determining the relative
deviation of the distribution function from the local equilibrium state, δ f̄ , (3):

δ f̄ = δ f − d f̄

dε̄
δU = f ( �p, �r , t) − fle = −χ

d f̄

dε̄
, χ = ν + δU. (24)

With the use of the algebraic relation [4][
(1 − f̄1)(1 − f̄2) f̄3 f̄4 − f̄1 f̄2(1 − f̄3)(1 − f̄4) exp

(∓h̄ω

T

)]
δ(	ε ± h̄ω) = 0, (25)

equation (23) can be presented as

J ( �p, �r , t) =
∫

d �p2 d �p3 d �p4

(2π h̄)6
W ({ �pi})δ(	 �p)	χ f̄1 f̄2(1 − f̄3)(1 − f̄4)

× [�(h̄ω, T ) − �(−h̄ω, T )], (26)

where �(h̄ω, T ) = δ(	ε + h̄ω)[exp(−h̄ω/T ) − 1]/2h̄ω.
The collision integral of the form (23) or (26) depends on the variation δ f̄ , J ≡ J (δ f̄ ).

It was mentioned in the introduction that this behaviour is in line with general properties
of the Vlasov–Landau equation in the Fermi liquid [3, 4] at ∂δ f/∂ t = 0. The collision
integral provides a driving of the distribution function towards its local equilibrium value.
This behaviour is in line with the general properties of the Vlasov–Landau equation in the
Fermi-liquid [3, 4] at ∂δ f/∂ t = 0. The expressions (23), (26) depend only on the occupation
probabilityP2p2h ≡ f̄1 f̄2(1− f̄3)(1− f̄4) of the 2p–2h states in the phase space. This fact leads
to interpretation of the collision damping with a linearized collision term (26) as a relaxation
process due to the coupling of one-particle and one-hole states to more complicated 2p–2h
configurations.

The form of the collision integral (26) in the Markovian limit (ω → 0) coincides with the
standard expression for the collision integral in a Fermi liquid without retardation effects [3, 4]
because in this case the term in square brackets of equation (26) tends to the value −δ(	ε)/T .

Equation (23) for some special explicit form of the quantity χ j was first used in [9, 21, 22].
The derivation of the collision integral (23) is performed in [15] within the framework of the
extended time-dependent Hartree–Fock model. The expressions for the distortion functions χ j

corresponding to a perturbation approach on the collision term and including the amplitudes
of the random phase approximation were used in this method.

Note that the expression for the collision integral in the two-component Fermi system is
obtained from equation (26) in the same manner as done in [23] under the assumption that the
chemical potentials and the equilibrium distribution functions are the same for protons and
neutrons.

3. Calculations of the relaxation times and nuclear matter viscosity

The collision integral can be used to calculate collisional relaxation times governing the
dissipative properties of different physical quantities [2, 4, 9–12, 24–26]. Below we calculate
relaxation times, τ

(±)
� , of collective vibrations in two-component nuclear matter consisting
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of neutron and protons subsystems. These collective relaxation times are determined by
interparticle collisions within the distorted layers of the Fermi surface with multipolarity �:

1

τ
(±)

�

≡
∫ ∞

0
dε1

∫
d�p J (±)

c ( p̂, ε1)Y�0( p̂)

/∫ ∞

0
dε1

∫
d�p δ f (±)Y�0( p̂), (27)

where Y�m( p̂) is the spherical harmonic function and J (±)( p̂, ε) are the linear combinations of
the collision integrals for protons Jp and neutrons Jn in nuclear matter: J (±) = (Jp ± Jn)/2;
δ f (±) = (δ f p ± δ fn)/2. These times are proportional to the relaxation times τ (±)

c defining the
damping widths �(±)

c (L) of the isoscalar (+) and the isovector (−) vibrations with frequency
ω [12, 23, 26, 27] in the regime of rare collisions with ωτ (±)

c � 1 in the Fermi liquid.
In particular, the collisional damping widths of giant resonances with dipole (L = 1) and
quadrupole (L = 2) multipolarities resemble the widths in the relaxation rate approach

�(±)
c (L) = h̄/τ (±)

c (L), τ (−)
c (L = 1) = τ

(−)

�=1, τ (+)
c (L = 2) = τ

(+)

�=2, (28)

in the case when the nuclear fluid dynamical model with relaxation is used [23, 26]. The
collisional damping width [12] of zero sound in the Fermi liquid with its relative velocity
Sr � 1 is also given by equation (28) but with the use of τ

(+)

�→∞ ∝ τ
(+)

2 for τ (±)
c (L).

The time τ
(+)

�=2 at ω = 0 is the thermal relaxation time determining the viscosity coefficient
of the Fermi liquid [25].

The analytical expressions for collective relaxation times of the damping of the collective
vibrations with frequency ω have the following general form in low-temperature and low-
frequency limits (T, h̄ω � εF ) [12, 23, 28]

h̄

τ
(±)
�

= 1

α
(±)
�

{(h̄ω)2 + (2πT )2}, 1

α
(±)
�

= 2m

3π h̄2 [〈σ ′
av�

(+)

� 〉 + 〈σ ′
pn�

(±)

� 〉], (29)

where σ ′
av = (σ ′

nn + σ ′
pp)/2; σ ′

j j ′ ≡ dσ j j ′/d� is the in-medium differential cross-section for
scattering of the nucleons j and j ′ (here, j = n or p, and similarly j ′ = p or n). The symbol
〈· · ·〉 in equation (29) denotes averaging over angles of the relative momenta of the colliding
particles,

〈(· · ·)〉 = 1

π

∫ π

0
dφ sin(φ/2)

∫ π

0
dθ (· · ·). (30)

The functions �
(±)
� define the angular constraint on nucleon scattering within the distorted

layers of the Fermi surface with multipolarity �:

�
(±)

� = 1 ± P�(cos φ) − P�(( p̂3 p̂1)) ∓ P�(( p̂4 p̂1)), (31)

where the scalar products ( p̂3 p̂1) and ( p̂4 p̂1) are given as

( p̂3 p̂1) = cos2(φ/2) + sin2(φ/2) cos θ,

( p̂4 p̂1) = cos2(φ/2) − sin2(φ/2) cos θ.
(32)

Due to the momentum conservation and conditions pi = pF , the angle θ agrees with the
scattering angle in the centre-of-mass reference frame of two nucleons. The angle φ defines
the magnitudes of the relative momenta �ki = ( �p2 − �p1)/2 and �k f = ( �p4 − �p3)/2 before and
after collision, respectively. The value of total momentum, �P = �p1 + �p2, also depends on the
magnitude of φ. We have

�ki �k f = k2 cos θ, k2 = k2
i = k2

f = p2
F sin2(φ/2), �P2 = 4 p2

F cos2(φ/2). (33)

Therefore the relative kinetic energy Erel of two nucleons as well as the energy of the centre
of mass motion Ecm are dependent on angle φ

Erel = k2/m = 2εF sin2(φ/2), Ecm = P2/2m = 2εF cos2(φ/2) (34)
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Figure 1. The relaxation times τ
(±)
�, f versus multipolarity � in a cold nucleus 208Pb with free space

cross-section.

Figure 2. The relative relaxation times τ
(±)
� /τ

(±)
�, f versus multipolarity � for different cross-section

parametrizations.

and only the total energy Etot = Erel + Ecm remains fixed, Etot = 2εF . Therefore the
in-medium differential cross-sections σ ′

j,m of two nucleons scattering depend on the relative

momenta �ki and �k f at fixed total energy rather then at fixed relative kinetic energy Erel ,
because the magnitude of Erel changes with angle φ between colliding particles. The transfer
momenta �q = �ki − �k f = �p3 − �p1 and �q ′ = −(�ki + �k f ) = �p1 − �p4 for scattering due to direct
and exchange interactions respectively are also functions of φ and θ : q = 2k(φ) sin(θ/2) and
q ′ = 2k(φ) cos(θ/2).

Now we estimate the collisional relaxation times in the case of the isotropic scattering with
the angle-integrated cross-sections σ j j ′ independent of energy. Performing angular integration
in (29) with the use of equations (30) and (31) we find that 1/τ

(±)

�<�
(±)
0

= 0 and

h̄

τ
(±)
�

= 1

α
(±)
�

[(h̄ω/2π)2 + T 2],
1

α
(±)
�

= 8m

3h̄2 [c�σav + d(±)
� σnp],

c� = 1 − 2 − (−1)�

2� + 1
, d(−)

� = 1 − (−1)�

2� + 1
, d(+)

� = d(−)

�=0 = c�=0 = c�=1 = 0,

(35)

where σav = [σpp + σnn + 2σnp]/4 is the in-medium spin–isospin averaged nucleon–nucleon
cross-section. The magnitude of the in-medium cross-section σ j j ′ is usually taken as
proportional to the value of the free space cross-section σ

( f )

j j ′ with a factor F = σ j j ′/σ
( f )

j j ′ ,
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Figure 3. The relative relaxation times τ
(±)
� /τ

(±)
�, f versus multipolarity � for different cross-section

parametrizations calculated on the Fermi surface.

so that the parameter α
(±)
� can be rewritten in the form

α
(±)
� = α̃

(±)
� /F, α̃

(±)
� = 4.18/[c� + 1.3d(±)

� ], MeV. (36)

Here, the values σ
( f )
av = 3.75 fm2 and σ

( f )
np = 5 fm2 are adopted [9, 27]; they

correspond to the free space cross-sections near the Fermi energy. The dependence on �

for relaxation times τ
(±)
� ≡ τ

(±)
�, f with the use of free space cross-sections is shown in figure 1;

h̄ω = 13.43 MeV. Figures 2 and 3 describe relative relaxation times versus multipolarity �

for cross-section parametrizations using Gogny and Skyrme effective two-body forces with
parameters from [15, 30]. The relative relaxation times presented in figure 3 were calculated
using cross-section on Fermi surface. Solid and dashed curves connect the values which
correspond to isoscalar and isovector modes of vibrations respectively.

The magnitudes of the relaxation times are different for isoscalar and isovector modes
of vibrations and they are dependent on the multipolarity �. The collisional relaxation times
vary rather slowly with collective motion mode at isotropic scattering with energy independent
free cross-sections. As seen from figure 3, the relaxation times calculated with the effective
interaction between nucleons are greater than those with cross-section in free space. This means
that the in-medium cross-section between nucleons in nuclear matter is smaller than in free
space (≈20% for Skyrme forces and ≈60% for Gogny interaction). The relaxation times τ

(±)

�

depend on frequency ω due to the memory effects in the collision integral. The temperature
dependence arises from smearing out the equilibrium distribution function near the Fermi
momentum in heated nuclei. The collisional rates 1/τ

(±)
� are quadratic both in temperature

and in frequency with the same relationship between the components much as in the zero sound
attenuation factor of a heated Fermi liquid within the Landau prescription [9, 15, 20, 26].

According to the response function approach the damping width of the giant isovector
dipole resonance (GDR) at temperature T is presented in the form [29]

�(T ) = 2qγ
E2

r + E2
0

(E2
r − E2

0)
2 + (2γ Er )2

, (37)

where γ is determined by the relaxation time τc(h̄ω = Er , T ),

γ = h̄

τc(h̄ω = Er , T )
, (38)

Er is the energy of the giant dipole resonance and E0 = 41A−1/3 MeV. Here, we determine
the quantity q from the equality of the GDR width in cold nuclei with the corresponding
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Figure 4. The temperature dependence of the GDR width according to equation (38) in nuclei 208 Pb
and 120Sn: dashed curves—calculations with Skyrme forces; dash–dot curves—Gogny interaction;
solid curves—calculations with free space cross-section for two-nucleon collisions.

experimental value �exp : �(T = 0) = �exp . The temperature dependences of the GDR width
according to equation (38) in atomic nuclei 208Pb and 120Sn are shown in figure 4. Experimental
data are taken from [31, 32] and they are indicated by points. The relaxation time τc is taken
as equal to τ

(−)

�=1: dashed curves in figure 4 correspond to calculations with Skyrme forces;
dash–dot curves—Gogny interaction; solid curves—calculations with free space cross-section
for two-nucleon collisions. The temperature behaviour of the damping width is in rather close
agreement with those of experimental data.

It is seen from figure 4 that in the rare collision regime the dependence of the GDR
widths on the collective vibration frequency and the temperature has the following form:
� ∝ (h̄ω)2 + 4(πT )2, which corresponds to the Landau prescription [20, 33, 34].

The relaxation times vary rather slowly with multipolarity of the Fermi surface distortions
governed by collective motion and two-body collisions. This gives us the possibility to use
approximately the relaxation time ansatz for the collision integral.
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